МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук

Врио директора

д-р техн. наук

А.Н.Шулюпин

2020 г.

Приказ № 2020 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СПЕЦИАЛЬНОЙ ДИСЦИПЛИНЕ

«ГЕОМЕХАНИКА, РАЗРУШЕНИЕ ГОРНЫХ ПОРОД, РУДНИЧНАЯ АЭРОГАЗОДИНАМИКА И ГОРНАЯ ТЕПЛОФИЗИКА»

по направлению подготовки научно-педагогических кадров в аспирантуре 21.06.01 Геология, разведка и разработка полезных ископаемых

Направленность:

25.00.20 Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика

Квалификация Исследователь. Преподаватель-исследователь Программа вступительного испытания составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации), утвержденного приказом министерства образования и науки РФ от 30 июля 2014 г. №886.

Программа вступительного испытания утверждена приказом ХФИЦ ДВО РАН № $\frac{27o_2}{2}$ от « $\frac{20}{2}$ » $\frac{2020}{2}$ г.

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРОГРАММЕ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ГЕОМЕХАНИКИ, РАЗРУШЕНИЮ ГОРНЫХ ПОРОД, РУДНИЧНОЙ АЭРОГАЗОДИНАМИКИ И ГОРНОЙ ТЕПЛОФИЗИКЕ

Основной целью вступительного экзамена в аспирантуру по направленности «Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика» является выявление у поступающего владения знаниями о современных технологиях подземной и открытой разработки месторождений и освоения подземного пространства; способности к обобщению и анализу информации, постановке целей и выбору путей их достижения; умения логически последовательно, аргументировано и ясно излагать мысли, правильно строить устную и письменную речь.

2. СОДЕРЖАНИЕ И СТРУКТУРА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ГЕОТЕХНОЛОГИИ (ПОДЗЕМНАЯ, ОТКРЫТАЯ, СТРОИТЕЛЬНАЯ)

Вступительное испытание в аспирантуру по специальности «Геомеханика, разрушение горных пород, рудничная аэрогазодинамика и горная теплофизика» включают в себя:

- устный ответ на 3 вопроса (находящиеся в билете) из предлагаемого списка вопросов вступительного испытания в соответствии с предполагаемой областью диссертационного исследования.
- беседа с комиссией по теме, связанной со специальностью и будущим научным исследованием.

Общий список вопросов к вступительному испытанию включает 3 раздела:

- 1. Геомеханика;
- 2. Разрушение горных пород;
- 3. Рудничная аэрогазодинамика и горная теплофизика.

Поступающие в аспирантуру должны показать свое знакомство с основной и дополнительной литературой по геомеханике и смежным дисциплинам, умение критически анализировать проблемы стоящие перед горной отраслью. Целесообразно ответы на вопросы сопровождать примерами из горной промышленности, связанные с деятельностью конкретных предприятий.

3. ВОПРОСЫ ПО ГЕОМЕХАНИКИ, РАЗРУШЕНИЮ ГОРНЫХ ПОРОД, РУДНИЧНОЙ АЭРОГАЗОДИНАМИКИ И ГОРНОЙ ТЕПЛОФИЗИКЕ, РАССМАТРИВАЕМЫЕ В ХОДЕ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

Раздел 1. Геомеханика

- 1. Взаимодействие крепи с массивом пород. Расчетные схемы крепи.
- 2. Монолитная бетонная и железобетонная крепь.
- 3. Сборная бетонная и железобетонная крепь.
- 4. Требования к методам определения механических свойств горных пород и состояний массива.
- 5. Методы определения деформационных и механических характеристик горных пород.
 - 6. Методы и средства лабораторных испытаний пород.
 - 7. Методы натурных исследований проявлений горного давления.
- 8. Механические свойства массивов горных пород при наличии структурно-механических ослаблений.
- 9. Напряженное состояние массива горных пород до и после начала горных работ.
 - 10. Упругие модели массива.
- 11. Напряжения и деформации в массиве вокруг незакрепленных выработок в упругом массиве.
 - 12. Жесткопластические модели массива.
 - 13. Упругопластические модели массива.
 - 14. Реологические модели массива.
 - 15. Устойчивость обнажений пород в горных выработках.
- 16. Прочность и разрушение горных пород в условиях объемного сжатия.
- 17. Опорное давление. Механизм формирования, параметры, динамика.
 - 18. НДС массива вокруг очистных выработок на угольных шахтах.
- 19. Зоны повышенного горного давления и разгрузки при отработке свит пластов. Механизм формирования, параметры.
- 20. Анкерная крепь выработок. Механизм воздействия на массив. Типы анкеров.

Раздел 2. Разрушение горных пород

1. Требования к буровзрывным работам.

2. Основы проектирования взрыва скважинных зарядов при разработке

месторождений открытым способом.

3. Основы проектирования взрыва скважинных зарядов при разработке

месторождений подземным способом.

- 4. Основные требования, предъявляемые к промышленным ВВ.
- 5. Кислородный баланс и реакции взрывчатого превращения.
- 6. Физическая сущность детонации промышленных ВВ.
- 7. Параметры (характеристики) ВВ и методы их оценки.
- 8. Средства и способы взрывания зарядов ВВ.
- 9. Коэффициент полезного действия взрыва. Общие принципы расчета
 - 10. Методы ведения взрывных работ.
 - 11. Специальные методы ведения взрывных работ.
 - 12. Технология контурного взрывания.
- 13. Формирование зон дробления, трещинообразования и откола на волновой стадии

действия взрыва.

- 14. Методы расчета зон разрушения.
- 15. Общие принципы расчета удельного расхода ВВ.
- 16. Заряды рыхления, выброса и камуфлета.
- 17. Гранулометрический состав разрушенной горной массы.
- 18. Негативные факторы воздействия взрыва на окружающую среду.
- 19. Мероприятия, направленные на снижение негативного воздействия взрыва на окружающую среду.
 - 20. Основные требования к хранению и транспортированию ВМ.

Раздел 3. Рудничная аэрогазодинамика и горная теплофизика

- 1. Атмосферный воздух. Изменение состава атмосферного воздуха при его движении по горным выработкам.
- 2. Нормативные документы, регламентирующие состав воздуха горных предприятий.
- 3. Горючие и взрывчатые свойства. Факторы, влияющие на взрывчатость угольной пыли.
- 4. Особенности взрывов угольной пыли в шахтах. Меры борьбы со взрывами угольной пыли.
 - 5. Способы измерений запыленности воздуха.

- 6. Внутренние и внешние источники выделения пыли и вредных газов в атмосферу карьера при различных процессах.
- 7. Микроклимат шахт. Термовлажностные параметры шахтного воздуха.
 - 8. Источники тепла в шахтах и рудниках. Тепловые режимы.
- 9. Теплопроводность, дифференциальное уравнение теплопроводности, условия однозначности.
 - 10. Законы термодинамики и формы их записи.
 - 11. Виды теплоносителей и теплообмена.
 - 12. Температурный режим горного массива.
 - 13. Тепловой режим горных выработок.
 - 14. Тепловой баланс шахт. Кондиционирование шахтного воздуха.
- 15. Микроклимат карьеров. Факторы, определяющие температурновлажностный режим карьера.
- 16. Меры по обеспечению нормативных параметров микроклимата на рабочих местах.
- 17. Основы расчета установок кондиционирования воздуха. Кондиционеры, применяемые для горно-транспортного оборудования.
 - 18. Уравнение Бернулли, его следствия. Закон сопротивления.
 - 19. Стационарные и нестационарные газодинамические процессы.
- 20. Источники газовыделения. Газовыделение с обнаженной поверхности горного массива. Газовыделение из отбитой горной массы. грунта.

4. ОЦЕНКА РЕЗУЛЬТАТОВ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

Результаты вступительных испытаний оцениваются по пятибалльной шкале. Оценка определяется как средний балл, выставленный экзаменаторами во время экзамена. Критерии оценки результатов комплексного экзамена в аспирантуру:

- 5 (Отлично) полный безошибочный ответ, в том числе на дополнительные вопросы членов экзаменационной комиссии. Поступающий должен правильно определять понятия и категории, выявлять основные тенденции и противоречия, свободно ориентироваться в теоретическом и практическом материале.
- 4 (Хорошо) правильные и достаточно полные, не содержащие ошибок и упущений ответы. Оценка может быть снижена в случае затруднений студента при ответе на дополнительные вопросы членов экзаменационной комиссии. При ответе допущены отдельные несущественные ошибки.

- 3 (Удовлетворительно) недостаточно полный объем ответов, наличие ошибок и некоторых пробелов в знаниях.
- 2 (Неудовлетворительно) Неполный объем ответов, наличие ошибок и пробелов в знаниях или отсутствие необходимых знаний.

5. РЕКОМЕНДУЕМАЯ ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Баклашов И. В., Геомеханика. Т.1. Основы геомеханики. М.: Изд. МГГУ, 2004. 208 с.
- 2. Булычев Н. С. Механика подземных сооружений. М.: Недра, 1994. 382 с.
- 3. Латышев О. Г. Разрушение горных пород. М.: Теплотехник, 2007. 672 с.

Дополнительная литература

Барон Л. И. Горнотехнологическое породоведение. Предмет и способы исследований. - М.: Наука, 1977. — 324 с.

Баклашов И. В., Картозия Б. А., Шашенко А. Н., Борисов В.Н. Геомеханика. Т.2. Геомеханические процессы. – М.: Изд. МГГУ, 2004. – 249 с.

Зерцалов М. Г. Механика грунтов (введение в механику скальных грунтов). – М.: Ассоциация строительных вузов, 2006. – 364 с.

Каркашадзе Г.Г. Механическое разрушение горных пород. – М.: Изд-во МГГУ, 2004. – 222 с.

Корнилков М. В. Разрушение горных пород взрывом: конспект лекций. – Екатеринбург: УГГУ. – 202 с.

Кутузов Б. Н. Методы ведения взрывных работ. – Ч. 2. Взрывные работы в горном деле и промышленности. – М.: Горная книга, 2008. – 512 с.

Латышев О. Г. Методы и средства изучения быстропротекающих процессов. – Екатеринбург: УГГУ, 2007. – 232 с.

Латышев О. Г., Петрушин А. Г., Азанов М.А. Промышленные взрывчатые материалы. – Екатеринбург: УГГУ, 2009. – 221 с.

Половов Б.Д. Обоснование инженерных решений по эффективному освоению подземного пространства крупнейших и крупных городов / Б.Д. Половов, М.В. Корнилков, В.В. Поддубный, В.А.Борисов, А.Г. Запрудин. – Екатеринбург: Изд-во УГГУ, 2008. – 377 с.

Шашенко А.Н., Пустовойтенко В.П. Механика горных пород. – Киев: «Новий друк», 2003.-400 с.